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Do they depend upon the vacuum conditions ? 
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 The electrodynamical “constants” c, e0 and m0 are considered to be 

fundamental constants 

 There is no physical mechanism explaining their origin 

 They are assumed to be invariant in space and in time 

What is the physical origin  

of the electromagnetic constants c, e0 and m0 ?  
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 Part I 

 We propose a mechanism where e0 , m0 and c originate from the properties of the 

quantum vacuum and its interaction with photons 

    Urban, Couchot, Sarazin, Djannati Atai,  Eur. Phys. Journal D 67, 3 (2013) 58 

 Two main consequences: 

 stochastic fluctuations of c are expected 

 e0 , m0 and c can vary if the conditions of the vacuum vary 

 Part II 

 Analogy of GR with a static space-time metric and variable c and m 

 Application to cosmological redshift of supernovea with a static (non expanding) 

space-time metric 

  Possible  interpretation of apparent L due to a time variation of the vacuum 

conditions 
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An effective description of the quantum vacuum 

 vacuumfrom borrowedEnergy 

1

2



Life time of the pair: 

Vacuum filled with continuously appearing and disappearing ephemeral fermion pairs (f,f ) 
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 The global electric charge, color and kinetic moment are null 

    But the electric and magnetic dipole moments are not null 

 Only the charged fermions are considered (leptons & quarks) since we only study 

electromagnetic constants. However neutral fermions and bosons are also present.  
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 Density of the pairs (quantum mechanic) 

222 relfWrestWf cmKEKW  Average energy of a pair 
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 Life time of the pair 

Vacuum filled with continuously appearing and disappearing ephemeral fermion pairs (f,f ) 

KW is the single free parameter in this model 

An effective description of the quantum vacuum 
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Three distinct definitions for the speed of light in vacuum 

 Crel : maximal speed in special relativity   

propag

propag

T

L
c  C : velocity of the photon   

00

..

1

me
MEc CE.M. : phase velocity of the E.M. wave  

ccc MErel  ..A priori, we have on average :  
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m0 
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Vacuum Permeability m0  

I 

B 

B = m0 × (nI + M) 

M = magnetization of matter 

If the matter is removed :  B = m0nI  0 !!! 

The vacuum is “globally” paramagnetic 

 When an external magnetic field B is applied: 

           pairs whith magnetic moments aligned with B, have a longer life-time f 

 We assume that the global kinetic moment of the pair is null 

            spins (fermion, antifermion) = ↑↓  ou  ↓↑ 
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 But opposite charges  the pair has a global magnetic moment = 2 × Bohr magneton   

In our model, m0 comes from the magnetization of the f f pairs 
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 The life-time f of the pair depends on its coupling energy with B: 

B 

This pair has a larger coupling energy 

   it will live longer 
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   it will live shorter 
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The average energy of fermion pairs is ~ 32 times their mass energy (2mc2) 

KW  32   
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Why KW ~ 32 ?  
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e0 
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 Pairs are polarized during their lifetime  
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  depends on the coupling energy of the pair with the electrostatic field E 

The mechanism is similar to m0  e0 due to the polarization of the pairs f f  in vacuum 

Vacuum Permittivity e0 

 Electric dipole moment of the pairs f f                             (di is the average size of the pair) 
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Let’s see how a « real » photon would propagate  

through this vacuum filled by « ephemeral» fermions  
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f 

f 

 Real photon is trapped by an ephemeral pair 

 As soon as the pair disappears, the photon is relaxed with its initial energy-momentum 

Interaction of a photon with the fermion pairs in vacuum 

 Between two interactions, the vacuum is « empty » 

 there is no length scale, neither time scale 

 the photon goes instantaneously to the next interaction 

 A photon of a given helicity interact only with a fermion of opposite helicity (in 

order to flip its spin) 

 The duration of the capture ≈ the lifetime of the pair  finite transit time of the photon 

 finite velocity 
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2
,

f
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fstopNT
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  The average total duration for a photon to cross a length L is  
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 One obtains the general expression of the photon velocity in vacuum: 

Derivation of the photon velocity c 

fffstop NLN ,

 When a photon crosses a length L of vacuum 

The average number of stops on the f f  pairs is 

And the average duration of stops on the f f  pairs is   
2

,

f

fstopf NT

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 f = cross-section for a photon to interact with a  f f  pair 
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We can show that: 
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We get a complete coherent model: 
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The successives interactions of the photon are independant 

Stochastic fluctuations of the speed of light 

Remarks: 

• No dispersion in frequency is expected (energy of the photon is conserved)  

• Phase fluctuations are expected to be much lower (see “reply to comment” in 

EPJ 2013)  

 The number of captures and their duration fluctuate statistically 
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 The propagation time of a photon to cross a length L of vacuum must fluctuate as 

  )m(as 50 LLt KW ≈ 32   

Search for a broadening of the time width of a light pulse  

as the square root of the transit length  
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~ 9  ns.pc1/2 
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Available constraints 

~ Gpc 

GRBs 

(1 m ≈ 30 zpc) 
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Gamma Ray Bursts 

 ~ 20 short GRB’s have been observed by SWIFT, Konus-Wind of FERMI with a reliable 

measured redshift 

 An analysis of their light curve is in progress, in coll. with N. Bhat (Univ. Alabama in Huntsville) 

 Preliminary results (after analysing 7 GRBs): 

GRB-090510  
z = 0.9 

GRB-070429B  
z = 0.9 

t = 10 ms t = 9 ms t = 4 ms ? 

z = 0.9    dL ≈ 2.1026 m  0    750  as.m-1/2 
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0.05 fs.m1/2 

~ 9  ns.pc1/2 
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Available constraints 

t = 10 ms 

~ Gpc 

GRBs 

t ≈ 1 ms 

~2 kpc 

mbursts 

Crab pulsar 

~ 8.105 km 

~ 25 npc  

Lunar Range 

t = 0.2 fs 

~1m 

~ 30 zpc  

atto 

XUV 

(1 m ≈ 30 zpc) 
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The atto-FLOWER experimental project 

We propose to measure the duration of attosecond XUV pulses  

after crossing few tens of meter of vacuum 

Assuming XUV pulse t = 0.1 fs 
2×25 m 

t ≈ 0.4 fs  ? 
 = 0.05 fs.m1/2 

New collaboration with CELIA (Bordeaux) 

E. Constant, E. Mevel, F. Catoire, Ph.D. O. Hort 
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PART II 
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 e0, m0 and c are not constant but depend upon the vacuum parameters 

     they should vary when the vacuum parameters are modfied by an external field  

Variation of the electromagnetic constants 

 We will assume that e and ħ are fundamental constants  
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 They should vary when the vacuum is stressed by an external field 

 Gravitational field : analogy with the General Relativity 

 They could vary in time if the vacuum also varies in time 

 Cosmology : analogy with the apparent expansion and its acceleration 
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The vacuum  stressed by a gravitationnal field 

 General relativity: geometrical theory based on the equivalent principle 

 The constants are constant 

 But we must modify the “mathematical” space-time coordinates 

 

 A possible physical analogy:  

 We do not modify the “mathematical” space-time coordinates 

 Static and flat space-time metric (no curvature) 

 But we accept that c and m are modified (the vacuum conditions are modified) 

 Variation of c: deflection of light, shapiro effect 

 Variation of m and c: gravitational redshift, perihelion shift  
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 The analogy of GR with varying vacuum optical index in a flat space time is an old idea 

to explain the deflection of light by a gravitational mass 

• Eddington (Space, Time and Gravitation, p. 109 Cambridge University Press 1920) 

• Landau & Lifshitz:  (The Classical Theory of Fields, Pergamon Press 1975) 

•  Felice (Gen. Rel. Grav., Vol. 2, 334 1971)  & Evans, Nandi & Islam (Gen. Rel. Grav. 28, 413, 1996) 
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 In this model, a mechanism exists to modify c 
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 Generalization for gravitational redshift, and other GR effects with variable optical index 

have been proposed 

    See: Evans, Nandi & Islam (Gen. Rel. Grav. 28, 413, 1996) 

 

    However:  

- The energy of the photon was not conserved during its propagation 

- The advance of the perihely was not correctly explained… 

Gravitational Blueshift 
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Gravitational Blueshift 

In order to conserve the energy of the photon during its propagation, 

we also assume that the inertial mass of a particle varies when the 

vacuum is stressed by a gravitational field 
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Varying inertial mass 
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 This is what we expect if m corresponds to an electromagnetic self-energy 

with vayring e0 

          (see Wilson Phys. Rev. 17, 54, 1921) 

 Variation of the v.e.v. of the Higgs field ? 

 Higgs doublet = condensate of tt +nRnL from vacuum fluctuation  

 mass = self-energy ? 

         (see Smetana  arXiv:1309.4688) 
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we can fit well the observables 

 Deflection of light 

 Shapiro effect 

 Gravitational redshift 

 Perihelion shift of Mercury 
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With varying c and m in a static and flat space-time metric  
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Redshift 

Supernovae Survey 

t = epoch of the supernovae 

Today t = 0 

 is the only free parameter 

of the fit 

 ~ 3.5 Gy 

We follow the same idea: 

 Static & flat space-time metric (no expansion of the metric) 

 Vacuum conditions modified in time: m and c vary in time 

Cosmological Redshift 
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What                       could mean ?  

“F=ma” optics,  Evans, Am. J. Phys. 54, 876 (1986) 

Fermat’s principle 

  0)(  drrnd

Principle of least action 
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The potential energy of the vacuum 

 decreases linearly in time  

And do not ask me what it means !… 
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Conclusions 
e0 , m0 and c originate from the properties of the vacuum and its interaction with photons 

 

 It is a discrete description of the vacuum 
 

 Stochastic fluctuations of the photon propagation time in vacuum are predicted 

 
 

    We have started an experimental test in collaboration with CELIA using atto XUV pulses 
 

 e0 , m0  and c are not constant but can vary if the parameters of the vacuum vary 
 

 Analogy of GR is possible with a static metric but with varying c and m 
 

 Cosmology with a static space-time metric (no metric expansion) but time varying vacuum 

 Cosmological redshift is due to time variation of c and m 

 Apparent acceleration of Supernovae redshift is well fitted by a simple time variation 

of c equivalent to a linear vacuum potential variation 

  )m(as 50 LLt 
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FLOWER 
Fluctuations of the Light velOcity WhatEver the Reason 

 
François Couchot, Arache Djannati-Atai, Xavier Sarazin, Marcel Urban 

LAL Paris-Sud Orsay, APC Paris-Diderot 
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 The “vacuum optical index” n 

n < 1 inside an ultra high intensity laser pulse 

2nd experimental test 
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Effet SHADOK 
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The probe pulse, circularly polarized +1, moves with a velocity c 

A pump laser, circularly polarized +1, with ultra high intensity, masks some virtual pairs  
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Light Saber 
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Laser beam probe 

Helicity +1 et -1 

High intensity  

Laser beam 
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This guy should literally bounce back 
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