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Abstract. There may be a link between the quantum properties of the vacuum and the parameters de-
scribing the properties of light propagation, culminating in a sum over all types of elementary particles
existing in Nature weighted only by their squared charges and independent of their masses. The estimate
for that sum is of the order of 100.

1 Introduction

The speed of light in vacuum and the impedance of the
vacuum for electromagnetic radiation are experimentally
determined parameters, the value of which has not been
deduced so far. The same holds for the fine structure con-
stant. Here, we use a simple model, borrowed from the
description of dispersion in solid state physics, to attempt
to establish a link between classical optics, i.e. Maxwell’s
equations, and the quantum properties of the vacuum.

Maxwell’s displacement, D = ε0E + P, contains a
quantity called the electric polarization of the vacuum. In
the SI system, this quantity is ε0. P describes the polar-
ization of the medium, in case we are not dealing with just
the vacuum. Normally, ε0 is taken as a parameter given
by Nature. In the past, its value has occasionally been
adjusted with the availability of more precise measure-
ment. Likewise, 1/µ0 is the magnetization of the vacuum1,
H = B/µ0−M. Here we expand on our earlier analysis [1]
to underline its relevance for particle physics. A related

a e-mail: lsanchez@fis.ucm.es
1 Initially, quantities such as the speed of light and the

impedance of the vacuum where experimentally determined
parameters. Then, in the SI system in 1948 the value for µ0

was defined. Later, in 1983 the speed of light was given a de-
fined value. As a result, ε0 and the vacuum impedance also
had defined values. These definitions were made jointly by the
institutions in charge of standards world wide. The values were
defined to be compatible with the earlier experimental values
within the error bars. Currently, new SI definitions are being
discussed by the same institutions with the goal to improve the
standards e.g. of the kilogram. As a side effect, µ0 and ε0 will
be experimentally determined numbers again. For the purpose
of this paper we, therefore, consider the above constants of
classical electromagnetism to be experimental numbers, which
may tell us something about Nature.

proposal linking the quantum vacuum to light propaga-
tion was obtained independently by Urban et al. [2].

In the early days of quantum mechanics, Weisskopf
made the statement that the positron theory works well
provided one ignores any electric and magnetic polariz-
ability of the vacuum it may imply [3]. Looking back, we
would reinterpret this statement as meaning that the po-
larizability of the virtual electron-positron pairs in the vac-
uum must, of course, be already contained in Maxwell’s
equations – otherwise they would not work so well – and
it would be wrong to account for the same effect a second
time. However, this implies the properties of the quantum
vacuum govern the propagation of light and thus govern
all of classical optics. Heitler [4] likewise mentions that ε0

may be thought of as the polarizability of the vacuum as-
sociated with the electric dipoles induced in the virtual
electron-positron pairs by an external electric field. We
now take this literally and relate the parameters appear-
ing in Maxwell’s equations, ε0 and 1/µ0, to the quantum
properties of the vacuum. Incidentally, the term Maxwell
added to form the Lorentz invariant set of equations, he
interpreted as the displacement current of the vacuum. In
our approach, this interpretation comes to life, resulting in
a Lorentz invariant contribution of the quantum vacuum
to the propagation of light.

2 The model

The speed of light plays a multiplicity of roles in consider-
ations describing different physical quantities: (1) crel, the
relativistic relation between the mass of a particle and its
rest energy and the limiting speed in the Lorentz trans-
formation; and (2) clight, the phase velocity of electromag-
netic radiation in vacuum. For the argument below, we
first keep crel and clight as separate and not necessarily
identical quantities. This obviously means that, for the
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V. S. Weisskopf: Kongelige Danske Videnskabernes Selskab, 
Mathematisk-fysiske Meddelelser XIV, No.6, (1936) 
!

Weisskopf’s three problematic quantities 
!
1.- ... 
2.- ... 
3.- A spatially and temporally constant and field independent electric and 

magnetic polarizability of the vacuum  
!
These quantities relate to the field free vacuum.  
It can be taken as self-evident that they can have no physical meaning. 
!
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• Warning 
!
!
!
are not necessarily equivalent! 
!
K. Scharnhorst, Phys. Lett. B 236, 354(1990) 

!
•We think of the vacuum as a dielectric and diamagnetic 

medium 
!
!
!
!
!
derive               from properties of the vacuum  
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Text

!
• Absolute reference system  
!
• Incompressible 
!
• Huge stiffness  
!

• Not opposing to the motion of bodily matter 
!

• Experiments cannot detect the relative motion respect to the ether! 
!
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Mass drops out!

all types of elementary  
particles contribute? 
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FIG. 2. The measured and theoretical electromagnetic cou-
pling as a function of momentum transfer Q. The solid and
dotted lines correspond to positive and negative Q2 predictions,
respectively. As we probe closer to the bare charge, its ef-
fective strength increases. ⇧Qg1Qg2 ⇥1⌃2 denotes the square root
of the median value for the product of the photon momentum
transfers in the antitagged e1e2 ! e1e2m1m2 sample. The
hadronic data point has been shifted for display.
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!
!
• Our simple model predicts a finite number of charged elementary particles 
and that it relates this number to low-energy properties of the electromagnetic 
field  
!
• The value predicted by the model is determined by the relative properties of 
the electric and magnetic interaction of light with the quantum vacuum and is 
independent of the number of elementary particles. 
!

• We have shown an intimate relationship between the properties of the 
quantum vacuum and the constants in Maxwell's equations.
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"It is deplorable that fewer and fewer students 
nowadays study Heitler's classical treatise on the 
quantum theory of radiation. As a result, we see a 
number of sophisticated, yet uneducated, theoreticians 
who are conversant in LSZ formalism of Heisenberg field 
operators but do not know why an excited atom 
radiates”
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