Black Holes in Loop Quantum Gravity

Karim NOUI

Laboratoire de Mathématiques et de Physique Théorique, TOURS Astro Particules et Cosmologie, PARIS

UPS Toulouse - november 2013

Karim NOUI

Black Holes in LQG 1/15

・同・ ・ヨ・ ・ヨ・

3

Introduction Quantizing Gravity : Why ?

Two (amazingly efficient) fundamental theories

- ▷ Small scales (up to ...) : Quantum Physics and QFT
- ▷ Large scales (up to ...) : General Relativity

When General Relativity meets Quantum Physics

 \triangleright Origin of the Universe : below the Planck length $\ell_P = \sqrt{\frac{hG}{c^3}}$

$$r_S = rac{2Gm}{c^2} \sim rac{h}{mc} = \lambda_C$$

- ▷ Black Holes : Bekenstein-Hawking thermodynamics $S = a_H/4\ell_P^2$
- Problem of Singularities in General Relativity : Penrose

Problems in Quantizing Gravity

- Perturbative quantization : non-renormalizable theory
- Hamiltonian quantization : technically too involved
- \triangleright What is the meanning of quantizing space-time ? ____ , _ _ _ , _ _ _ ,

Introduction Quantizing Gravity : How ?

(Inequivalent) Attempts to quantize gravity

▷ String theory : General Relativity should be modified at high energies but quantization rules remain unchanged

 \triangleright Loop Quantum Gravity : GR is fundamental but the quantization process should be modified/adapted

▷ Others : Dynamical triangulations, Non-Commutative Geometry ...

Loop Quantum Gravity : a very powerful approach

- The Space is fundamentally discrete
- \triangleright The fundamental length is a UV cutt-off : consequences in LQC
- ▷ Discreetness provides a statistical explanation of BH thermodynamics

Even though the theory is not yet complete

- ▷ The kinematics is totally well understood : states and observables
- \triangleright But the quantum dynamics is not fully under control : Spin-Foams
- Many open questions concerning the classical limit

Introduction

Black Holes to probe quantum gravity at the Planck length

Black Hole thermodynamics : the classical viewpoint

- ▷ Quantum Field Theory in a classical curved background
- \triangleright Bekenstein-Hawking entropy for any Black Holes : $S = a_H/4\ell_P^2$
- \triangleright Where a_H is the horizon area : information is contained in the area
- \triangleright Thermal radiation of particles at Hawking temperature ${\cal T}=\kappa/2\pi$

Quantum Black Holes : old results

- \triangleright Precise description of the BH micro states : partition function ${\cal Z}$
- \triangleright The micro canonical entropy $S = log(\mathcal{Z})$
- > It reproduces the classical result at the semi-classical limit

Complex Quantum Black Holes : new results

- ▷ Effective description for an observer close to a Quantum BH
- \triangleright Particles thermalized at temperature T : graviton?
- \triangleright The spectrum : $|j,m\rangle$ where $m=-j,-j+1,\cdots$ and $E_m=mE_0$
- The BH entropy is the entropy of the vacuum

Overview

1. Loop Quantum Gravity in a nut shell

- Why standard quantization schemes fail?
- From Ashtekar gravity...
- ... To kinematical quantum states
- Physical interpretation : discrete geometry

2. Black Holes in LQG: a quick review

- Heuristic picture : the Rovelli model
- Relation to Chern-Simons theory

3. New results: vacuum, temperature and gravitons

- Going to complex variables
- The new partition function
- Vacuum and entropy; Excited states and temperature

Loop Quantum Gravity in a nut shell Why standard quantization schemes fail?

Lagrangian formulation : *M* is the 4D space-time > Einstein-Hilbert action : functional of the metric *g*

$$S_{EH}[g] = \int d^4x \sqrt{|g|} R$$

Hamiltonian formulation : $M = \Sigma \times \mathbb{R}$ ('61)

▷ ADM variables : $ds^2 = N^2 dt^2 - (N^a dt + h_{ab} dx^b)(N^a dt + h_{ac} dx^c)$ ▷ ADM action : (h, π) canonical variables

$$S_{ADM}[h,\pi;N,N^a] = \int dt \int d^3x (\dot{h}\pi + N^a H_a[h,\pi] + NH[h,\pi])$$

 \triangleright Constraints $H = 0 = H_a$ generate the diffeomorphisms

What about the quantization?

- ▷ Path integral : non renormalizable theory
- ▶ Hamiltonian : too complicated constraints!

6/15

Loop Quantum Gravity in a nut shell **From Ashtekar gravity**...

Starting point : first order formulation of gravity \triangleright A tetrad e'_{μ} (4 × 4 matrix) such that $g_{\mu\nu} = e'_{\mu}e'_{\nu}\eta_{IJ}$ \triangleright a so(3, 1) spin-connection ω_{μ}^{IJ} related to Levi-Civitta connection

The Ashtekar variables ('86)

▷ New complex variables : $E^a = \epsilon^{abc} e_b \times e_c$ and $A^i_a = \omega^i_a + \gamma \omega^{0i}_a$ ▷ Pair of canonical variables :

$$\{A_a^i(x), E_j^b(y)\} = (8\pi\gamma G)\delta_a^b\delta_j^i\delta^3(x, y)$$

 \triangleright Where $\gamma=\pm i$: Complex (or non-compact) symmetry group

 \triangleright The constraints become polynomials in *E* and *A*

▷ But... No one knows how to deal with complex variables

Immirzi-Barbero parameter γ

- \triangleright One considers γ real : canonical transformation
- \triangleright Interpret as a Wick rotation : gauge group becomes compact $SU(2)_{a,c}$

Loop Quantum Gravity in a nut shell ... To kinematical Quantum States

Schrodinger like quantization

 \triangleright States are functionals $\Psi(A)$ of the connection A

$$\hat{E}
ho \Psi(A) = i \gamma \ell_P rac{\delta \Psi}{\delta A} \quad ext{and} \quad \hat{A}
ho \Psi(A) = A \Psi(A) \,.$$

But no measure and no scalar product exists, then no predictions
Polymer quantization

 \triangleright States have support on the one dimensional lines of a graph Γ

 \triangleright Fundamental variables form the holonomy-flux algebra associated to edges e of Γ and surfaces S dual to Γ

$$A(e) = P \exp(\int_e A)$$
 and $E_f(S) = \int_S \operatorname{Tr}(f \star E)$.

▷ Cylindrical functions : $f \in Cyl(\Gamma)$ is a function of $A(e) \in SU(2)$ ▷ $E_f(S)$ acts as a vector field on f if $S \cap \gamma \neq 0$.

8/15

Loop Quantum Gravity in a nut shell *Physical interpretation* (Rovelli - Smolin)

Kinematical states : basis of spin-networks

> They are generalizations of Wilson loops with nodes

 ℓ_i are oriented links

9/15

 n_i are nodes

Geometric operators : area and volume become operators

Area acts on edges and Volume on vertices

$$S \xrightarrow{\Gamma} \mathcal{A}(S)|S\rangle = \frac{8\pi\gamma\hbar G}{c^3} \sum_{P \in S \cap \Gamma} \sqrt{j_P(j_P + 1)}|S\rangle$$

> The spectra are discrete : existence of a minimal length

Loop Quantum Gravity in a nut shell Picture of space at the Planck scale

From the kinematics, Space is discrete...

> Edges carry quanta of area, nodes carry quanta of volume

Black Holes in LQG : a quick review Heuristic picture : the Rovelli model

 $a_H = 8\pi \gamma \ell_P^2 \sum_j \sqrt{j(j+1)}$ Edges crossing spherical BH

Only spins 1/2 contribute to the area

- ▷ Number of edges : $a_H = 8\pi\gamma \ell_P^2 \times \mathbf{N} \times \frac{\sqrt{3}}{2}$
- \triangleright Number of states : number of singlets in $(1/2)^{\otimes N} \Longrightarrow \mathbf{\Omega} \sim 2^N$
- ▷ Bekenstein-Hawking formula for the entropy when $a_H \gg \ell_P^2$

$$S = \log(\Omega) \sim N\log(2) = rac{2\log(2)}{8\pi\gamma\ell_P^2\sqrt{3}}a_H \implies \gamma = rac{\log(2)}{\pi\sqrt{3}}$$

Refined models : all spins contribute

 \triangleright The value of γ changes. Is γ relevant at the quantum level ?

11/15

Black Holes in LQG : a quick review Relation to SU(2) Chern-Simons theory (Rovelli - Engle,KN,Perez)

Hamiltonian description of Black Holes

Governed by a Chern-Simons theory

$$S(A) = rac{k}{4\pi} \int \langle A \wedge dA + rac{2}{3} A \wedge A \wedge A
angle$$

 \triangleright The coupling constant (the level) $k\propto a_{H}$ and \langle,\rangle is a trace

Classical solutions : flat connections with singularities at punctures Quantization of a CS theory on a punctured sphere

 \triangleright Hilbert space is the space of (q-deformed) SU(2) intertwiners

$$\mathcal{H}(j_1,\cdots,j_n) = \operatorname{Inv}(V_{j_1}\otimes\cdots\otimes V_{j_N}).$$

Closed formula for the dimension

$$\mathcal{Z} = \frac{2}{k+2} \sum_{d=1}^{k+1} \sin^2(\frac{\pi d}{k+2}) \prod_{i=1}^N \frac{\sin(\frac{\pi d}{k+2}(2j_i+1))}{\sin(\frac{\pi d}{k+2})}$$

One recovers the BH entropy and log corrections.

Analytic continuation to $\gamma = i$

- \triangleright The level k becomes imaginary and $\lambda = |k|$
- New partition function for CS theory

$$\mathcal{Z} \simeq rac{2}{\lambda} \sum_{d=1}^{\lambda} \sinh^2(rac{\pi d}{\lambda}) \prod_{i=1}^N rac{\sinh(rac{\pi d}{\lambda}(2j_i+1))}{\sinh(rac{\pi d}{\lambda})} \; .$$

 \triangleright It should correspond to CS theory with $SL(2,\mathbb{C})$ gauge group

Semi-classical limit

▷ large spin
$$j_i \to \infty$$
 and $\ell_P \to 0$ s.t. $\ell_P^2 j_i \to \ell_i$
▷ $\log Z \sim a_H / 4 \ell_P^2$ with $a_H = 8\pi \sum_i \ell_i$

New results : vacuum, temperature and gravitons Energy of the vacuum and temperature of excited states

Beyond the leading order term

The partition function takes the form

$$\mathcal{Z} \simeq rac{2\sinh^2\pi}{\lambda} \prod_{i=1}^N \left(\sum_{m=0}^\infty \exp(-\beta E_m^{(j_i)})
ight)$$

 The energy spectrum is the energy of an accelerated observer (same as E. Bianchi)

$$E_m^{(j)} = \langle j, m | aK | j, m \rangle = (m - j)a$$

> The temperature in the Unruh temperature $\beta = 2\pi/a$ of the observer Locally at the vicinity of the quantum Black Hole

 \triangleright Thermalized states at β : probably gravitational dof

The vacuum has a negative energy and responsible for the huge entropy

LQG in a nut shell

- Kinematical States are labelled by topological graphs
- Geometrical operators have discrete spectra
- The quantum dynamics is still under construction

What do Quantum Black Holes teach us?

- \triangleright The Barbero-Immirzi parameter should return to $\gamma = i$
- ▷ The LQG dof contain the gravitons (at least close to a BH horizon)

Effective description of a Quantum Black Hole

- Thermalized graviton at Unruh temperature
- The vacuum has a negative energy
- ▷ The energy of the vacuum is responsible for the entropy

Our recent references

- ▷ Engle,KN,Perez : PRL105.031302 (2009) JHEP 1105 (2011)
- ▷ Frodden,Geiller,KN,Perez :arXiv :1212.4060 JHEP 05 139 (2013)
- ▷ Ghosh,KN,Perez : arXiv :1309.4563

ロトス回とスヨケスヨト