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Introduction

Quantizing Gravity : Why ?

Two (amazingly efficient) fundamental theories
⊲ Small scales (up to ...) : Quantum Physics and QFT
⊲ Large scales (up to ...) : General Relativity

When General Relativity meets Quantum Physics

⊲ Origin of the Universe : below the Planck length ℓP =
√

hG
c3

rS =
2Gm

c2
∼ h

mc
= λC

⊲ Black Holes : Bekenstein-Hawking thermodynamics S = aH/4ℓ
2
P

⊲ Problem of Singularities in General Relativity : Penrose

Problems in Quantizing Gravity
⊲ Perturbative quantization : non-renormalizable theory
⊲ Hamiltonian quantization : technically too involved
⊲ What is the meanning of quantizing space-time ?
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Introduction

Quantizing Gravity : How ?

(Inequivalent) Attempts to quantize gravity
⊲ String theory : General Relativity should be modified at high energies

but quantization rules remain unchanged
⊲ Loop Quantum Gravity : GR is fundamental but the quantization

process should be modified/adapted
⊲ Others : Dynamical triangulations, Non-Commutative Geometry ...

Loop Quantum Gravity : a very powerful approach
⊲ The Space is fundamentally discrete
⊲ The fundamental length is a UV cutt-off : consequences in LQC
⊲ Discreetness provides a statistical explanation of BH thermodynamics

Even though the theory is not yet complete
⊲ The kinematics is totally well understood : states and observables
⊲ But the quantum dynamics is not fully under control : Spin-Foams
⊲ Many open questions concerning the classical limit
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Introduction

Black Holes to probe quantum gravity at the Planck length

Black Hole thermodynamics : the classical viewpoint
⊲ Quantum Field Theory in a classical curved background
⊲ Bekenstein-Hawking entropy for any Black Holes : S = aH/4ℓ

2
P

⊲ Where aH is the horizon area : information is contained in the area
⊲ Thermal radiation of particles at Hawking temperature T = κ/2π

Quantum Black Holes : old results
⊲ Precise description of the BH micro states : partition function Z
⊲ The micro canonical entropy S = log(Z)
⊲ It reproduces the classical result at the semi-classical limit

Complex Quantum Black Holes : new results
⊲ Effective description for an observer close to a Quantum BH
⊲ Particles thermalized at temperature T : graviton ?
⊲ The spectrum : |j ,m〉 where m = −j ,−j + 1, · · · and Em = mE0

⊲ The BH entropy is the entropy of the vacuum
⊲ The BH temperature is obtained from the excited states
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Overview

1. Loop Quantum Gravity in a nut shell

• Why standard quantization schemes fail ?
• From Ashtekar gravity...
• ... To kinematical quantum states
• Physical interpretation : discrete geometry

2. Black Holes in LQG: a quick review

• Heuristic picture : the Rovelli model
• Relation to Chern-Simons theory

3. New results: vacuum, temperature and gravitons

• Going to complex variables
• The new partition function
• Vacuum and entropy ; Excited states and temperature
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Loop Quantum Gravity in a nut shell

Why standard quantization schemes fail ?

Lagrangian formulation : M is the 4D space-time
⊲ Einstein-Hilbert action : functional of the metric g

SEH [g ] =

∫

d4x
√

|g |R

Hamiltonian formulation : M = Σ× R (’61)
⊲ ADM variables : ds2 = N2dt2 − (Nadt + habdx

b)(Nadt + hacdx
c)

⊲ ADM action : (h, π) canonical variables

SADM [h, π;N,Na] =

∫

dt

∫

d3x(ḣπ + NaHa[h, π] + NH[h, π])

⊲ Constraints H = 0 = Ha generate the diffeomorphisms

What about the quantization ?
⊲ Path integral : non renormalizable theory
⊲ Hamiltonian : too complicated constraints !
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Loop Quantum Gravity in a nut shell

From Ashtekar gravity...

Starting point : first order formulation of gravity
⊲ A tetrad e Iµ (4× 4 matrix) such that gµν = e Iµe

J
ν ηIJ

⊲ a so(3, 1) spin-connection ωIJ
µ related to Levi-Civitta connection

The Ashtekar variables (’86)
⊲ New complex variables : E a = ǫabceb × ec and Ai

a = ωi
a + γω0i

a

⊲ Pair of canonical variables :

{Ai
a(x),E

b
j (y)} = (8πγG )δba δ

i
j δ

3(x , y)

⊲ Where γ = ±i : Complex (or non-compact) symmetry group
⊲ The constraints become polynomials in E and A
⊲ But... No one knows how to deal with complex variables

Immirzi-Barbero parameter γ
⊲ One considers γ real : canonical transformation
⊲ Interpret as a Wick rotation : gauge group becomes compact SU(2)
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Loop Quantum Gravity in a nut shell

... To kinematical Quantum States

Schrodinger like quantization
⊲ States are functionals Ψ(A) of the connection A

Ê ⊲Ψ(A) = iγℓP
δΨ

δA
and Â⊲Ψ(A) = AΨ(A) .

⊲ But no measure and no scalar product exists, then no predictions
Polymer quantization

⊲ States have support on the one dimensional lines of a graph Γ
⊲ Fundamental variables form the holonomy-flux algebra associated to

edges e of Γ and surfaces S dual to Γ

A(e) = P exp(

∫

e

A) and Ef (S) =

∫

S

Tr(f ⋆ E ) .

⊲ Cylindrical functions : f ∈ Cyl(Γ) is a function of A(e) ∈ SU(2)
⊲ Ef (S) acts as a vector field on f if S ∩ γ 6= 0.
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Loop Quantum Gravity in a nut shell

Physical interpretation (Rovelli - Smolin)

Kinematical states : basis of spin-networks
⊲ They are generalizations of Wilson loops with nodes

ℓi are oriented links

ni are nodes

ℓ1

ℓ2

ℓ3
n1 n2

Geometric operators : area and volume become operators
⊲ Area acts on edges and Volume on vertices

S
Γ

A(S)|S〉 = 8πγ~G
c3

∑

P∈S∩Γ
√

jP(jP + 1)|S〉

⊲ The spectra are discrete : existence of a minimal length
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Loop Quantum Gravity in a nut shell

Picture of space at the Planck scale

From the kinematics, Space is discrete...

⊲ Edges carry quanta of area, nodes carry quanta of volume
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Black Holes in LQG : a quick review

Heuristic picture : the Rovelli model

aH = 8πγℓ2P
∑

j

√

j(j + 1)

Edges crossing spherical BH

Only spins 1/2 contribute to the area

⊲ Number of edges : aH = 8πγℓ2P ×N×
√
3
2

⊲ Number of states : number of singlets in (1/2)⊗N =⇒ Ω ∼ 2N

⊲ Bekenstein-Hawking formula for the entropy when aH ≫ ℓ2P

S = log(Ω) ∼ N log(2) =
2 log(2)

8πγℓ2P
√
3
aH =⇒ γ =

log(2)

π
√
3

.

Refined models : all spins contribute
⊲ The value of γ changes. Is γ relevant at the quantum level ?
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Black Holes in LQG : a quick review

Relation to SU(2) Chern-Simons theory (Rovelli - Engle,KN,Perez)

Hamiltonian description of Black Holes
⊲ Governed by a Chern-Simons theory

S(A) =
k

4π

∫

〈A ∧ dA+
2

3
A ∧ A ∧ A〉

⊲ The coupling constant (the level) k ∝ aH and 〈, 〉 is a trace
⊲ Classical solutions : flat connections with singularities at punctures

Quantization of a CS theory on a punctured sphere
⊲ Hilbert space is the space of (q-deformed) SU(2) intertwiners

H(j1, · · · , jn) = Inv(Vj1 ⊗ · · · ⊗ VjN ) .

⊲ Closed formula for the dimension

Z =
2

k + 2

k+1
∑

d=1

sin2(
πd

k + 2
)

N
∏

i=1

sin( πd
k+2(2ji + 1))

sin( πd
k+2)

.

⊲ One recovers the BH entropy and log corrections
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New results : vacuum, temperature and gravitons

Going to complex variables (Frodden,Geiller,KN,Perez)

Analytic continuation to γ = i
⊲ The level k becomes imaginary and λ = |k |
⊲ New partition function for CS theory

Z ≃ 2

λ

λ
∑

d=1

sinh2(
πd

λ
)

N
∏

i=1

sinh(πd
λ
(2ji + 1))

sinh(πd
λ
)

.

⊲ It should correspond to CS theory with SL(2,C) gauge group

Semi-classical limit
⊲ large spin ji → ∞ and ℓP → 0 s.t. ℓ2P ji → ℓi
⊲ logZ ∼ aH/4ℓ

2
P with aH = 8π

∑

i ℓi
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New results : vacuum, temperature and gravitons

Energy of the vacuum and temperature of excited states

Beyond the leading order term
⊲ The partition function takes the form

Z ≃ 2 sinh2 π

λ

N
∏

i=1

( ∞
∑

m=0

exp(−βE
(ji )
m )

)

⊲ The energy spectrum is the energy of an accelerated observer (same
as E. Bianchi)

E
(j)
m = 〈j ,m|aK |j ,m〉 = (m − j)a

⊲ The temperature in the Unruh temperature β = 2π/a of the observer
Locally at the vicinity of the quantum Black Hole

⊲ Thermalized states at β : probably gravitational dof
⊲ The vacuum has a negative energy and responsible for the huge

entropy
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Conclusion and references

LQG in a nut shell
⊲ Kinematical States are labelled by topological graphs
⊲ Geometrical operators have discrete spectra
⊲ The quantum dynamics is still under construction

What do Quantum Black Holes teach us ?
⊲ The Barbero-Immirzi parameter should return to γ = i
⊲ The LQG dof contain the gravitons (at least close to a BH horizon)

Effective description of a Quantum Black Hole
⊲ Thermalized graviton at Unruh temperature
⊲ The vacuum has a negative energy
⊲ The energy of the vacuum is responsible for the entropy

Our recent references
⊲ Engle,KN,Perez : PRL105.031302 (2009) - JHEP 1105 (2011)
⊲ Frodden,Geiller,KN,Perez :arXiv :1212.4060 - JHEP 05 139 (2013)
⊲ Ghosh,KN,Perez : arXiv :1309.4563
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