Black Holes in Loop Quantum Gravity

Karim NOUI

Laboratoire de Mathématiques et de Physique Théorique, TOURS
Astro Particules et Cosmologie, PARIS
Introduction

Quantizing Gravity: Why?

Two (amazingly efficient) fundamental theories
- Small scales (up to ...) : Quantum Physics and QFT
- Large scales (up to ...) : General Relativity

When General Relativity meets Quantum Physics
- Origin of the Universe: below the Planck length \(\ell_P = \sqrt{\frac{\hbar G}{c^3}} \)

\[
rs = \frac{2Gm}{c^2} \sim \frac{\hbar}{mc} = \lambda_c
\]

- Black Holes: Bekenstein-Hawking thermodynamics \(S = a_H/4\ell_P^2 \)
- Problem of Singularities in General Relativity: Penrose

Problems in Quantizing Gravity
- Perturbative quantization: non-renormalizable theory
- Hamiltonian quantization: technically too involved
- What is the meaning of quantizing space-time?
Introduction

Quantizing Gravity : How ?

(Inequivalent) Attempts to quantize gravity

▷ String theory : General Relativity should be modified at high energies but quantization rules remain unchanged

▷ Loop Quantum Gravity : GR is fundamental but the quantization process should be modified/adapted

▷ Others : Dynamical triangulations, Non-Commutative Geometry ...

Loop Quantum Gravity : a very powerful approach

▷ The Space is fundamentally discrete

▷ The fundamental length is a UV cutt-off : consequences in LQC

▷ Discreetness provides a statistical explanation of BH thermodynamics

Even though the theory is not yet complete

▷ The kinematics is totally well understood : states and observables

▷ But the quantum dynamics is not fully under control : Spin-Foams

▷ Many open questions concerning the classical limit
Black Holes to probe quantum gravity at the Planck length

Black Hole thermodynamics: the classical viewpoint

- Quantum Field Theory in a classical curved background
- Bekenstein-Hawking entropy for any Black Holes: $S = a_H/4\ell_P^2$
- Where a_H is the horizon area: information is contained in the area
- Thermal radiation of particles at Hawking temperature $T = \kappa/2\pi$

Quantum Black Holes: old results

- Precise description of the BH micro states: partition function Z
- The micro canonical entropy $S = \log(Z)$
- It reproduces the classical result at the semi-classical limit

Complex Quantum Black Holes: new results

- Effective description for an observer close to a Quantum BH
- Particles thermalized at temperature T: graviton?
- The spectrum: $|j, m\rangle$ where $m = -j, -j + 1, \cdots$ and $E_m = mE_0$
- The BH entropy is the entropy of the vacuum
- The BH temperature is obtained from the excited states
Overview

1. Loop Quantum Gravity in a nut shell
 - Why standard quantization schemes fail?
 - From Ashtekar gravity...
 - ... To kinematical quantum states
 - Physical interpretation: discrete geometry

2. Black Holes in LQG: a quick review
 - Heuristic picture: the Rovelli model
 - Relation to Chern-Simons theory

3. New results: vacuum, temperature and gravitons
 - Going to complex variables
 - The new partition function
 - Vacuum and entropy; Excited states and temperature
Loop Quantum Gravity in a nut shell

Why standard quantization schemes fail?

Lagrangian formulation: \mathcal{M} is the 4D space-time

- Einstein-Hilbert action: functional of the metric g

\[
S_{EH}[g] = \int d^4x \sqrt{|g|} R
\]

Hamiltonian formulation: $\mathcal{M} = \Sigma \times \mathbb{R}$ ('61)

- ADM variables: $ds^2 = N^2 dt^2 - (N^a dt + h_{ab} dx^b)(N^a dt + h_{ac} dx^c)$
- ADM action: (h, π) canonical variables

\[
S_{ADM}[h, \pi; N, N^a] = \int dt \int d^3x (\dot{h} \pi + N^a H_a[h, \pi] + NH[h, \pi])
\]

- Constraints $H = 0 = H_a$ generate the diffeomorphisms

What about the quantization?

- Path integral: non renormalizable theory
- Hamiltonian: too complicated constraints!
Starting point: first order formulation of gravity

- A tetrad e^I_{μ} (4 x 4 matrix) such that $g_{\mu\nu} = e^I_{\mu} e^J_{\nu} \eta_{IJ}$
- A so(3,1) spin-connection ω^I_{μ} related to Levi-Civitta connection

The Ashtekar variables (’86)

- New complex variables: $E^a = \epsilon^{abc} e_b \times e_c$ and $A^i_a = \omega^i_a + \gamma \omega^0_a$
- Pair of canonical variables:

$$\{A^i_a(x), E^b_j(y)\} = (8\pi \gamma G) \delta^b_a \delta^i_j \delta^3(x, y)$$

- Where $\gamma = \pm i$: Complex (or non-compact) symmetry group
- The constraints become polynomials in E and A
- But... No one knows how to deal with complex variables

Immirzi-Barbero parameter γ

- One considers γ real: canonical transformation
- Interpret as a Wick rotation: gauge group becomes compact $SU(2)$
Schrodinger like quantization

States are functionals $\Psi(A)$ of the connection A

$$\hat{E} \triangleright \Psi(A) = i\gamma \ell_P \frac{\delta \Psi}{\delta A} \quad \text{and} \quad \hat{A} \triangleright \Psi(A) = A\Psi(A).$$

But no measure and no scalar product exists, then no predictions

Polymer quantization

States have support on the one dimensional lines of a graph Γ

Fundamental variables form the holonomy-flux algebra associated to edges e of Γ and surfaces S dual to Γ

$$A(e) = P \exp(\int_e A) \quad \text{and} \quad E_f(S) = \int_S \text{Tr}(f \star E).$$

Cylindrical functions : $f \in \text{Cyl}(\Gamma)$ is a function of $A(e) \in SU(2)$

$E_f(S)$ acts as a vector field on f if $S \cap \gamma \neq 0$.
Loop Quantum Gravity in a nut shell

Physical interpretation (Rovelli - Smolin)

Kinematical states : basis of spin-networks

- They are generalizations of Wilson loops with nodes

![Diagram of spin-networks]

- ℓ_i are oriented links
- n_i are nodes

Geometric operators : area and volume become operators

- Area acts on edges and Volume on vertices

\[
\mathcal{A}(S)|S\rangle = \frac{8\pi \gamma \hbar \kappa}{c^3} \sum_{P \in S \cap \Gamma} \sqrt{j_P(j_P + 1)}|S\rangle
\]

- The spectra are discrete : existence of a minimal length
From the kinematics, Space is discrete...

Edges carry quanta of area, nodes carry quanta of volume
Black Holes in LQG: a quick review

Heuristic picture: the Rovelli model

\[a_H = 8\pi\gamma\ell_P^2 \sum_j \sqrt{j(j+1)} \]

Edges crossing spherical BH

Only spins 1/2 contribute to the area

- Number of edges: \(a_H = 8\pi\gamma\ell_P^2 \times N \times \frac{\sqrt{3}}{2} \)
- Number of states: number of singlets in \((1/2)^\otimes N \implies \Omega \sim 2^N\)
- Bekenstein-Hawking formula for the entropy when \(a_H \gg \ell_P^2 \)

\[
S = \log(\Omega) \sim N \log(2) = \frac{2 \log(2)}{8\pi\gamma\ell_P^2 \sqrt{3}} a_H \implies \gamma = \frac{\log(2)}{\pi \sqrt{3}}.
\]

Refined models: all spins contribute

- The value of \(\gamma \) changes. Is \(\gamma \) relevant at the quantum level?
Hamiltonian description of Black Holes

▷ Governed by a Chern-Simons theory

\[S(A) = \frac{k}{4\pi} \int \langle A \wedge dA + \frac{2}{3} A \wedge A \wedge A \rangle \]

▷ The coupling constant (the level) \(k \propto a_H \) and \(\langle , \rangle \) is a trace

▷ Classical solutions: flat connections with singularities at punctures

Quantization of a CS theory on a punctured sphere

▷ Hilbert space is the space of \((q\)-deformed\) \(SU(2)\) intertwiners

\[\mathcal{H}(j_1, \cdots, j_n) = \text{Inv}(V_{j_1} \otimes \cdots \otimes V_{j_N}) \]

▷ Closed formula for the dimension

\[Z = \frac{2}{k+2} \sum_{d=1}^{k+1} \sin^2 \left(\frac{\pi d}{k+2} \right) \prod_{i=1}^{N} \frac{\sin \left(\frac{\pi d}{k+2} (2j_i + 1) \right)}{\sin \left(\frac{\pi d}{k+2} \right)} . \]

▷ One recovers the BH entropy and log corrections
Analytic continuation to $\gamma = i$

- The level k becomes imaginary and $\lambda = |k|$
- New partition function for CS theory

$$Z \simeq \frac{2}{\lambda} \sum_{d=1}^{\lambda} \sinh^2\left(\frac{\pi d}{\lambda}\right) \prod_{i=1}^{N} \frac{\sinh\left(\frac{\pi d}{\lambda}(2j_i + 1)\right)}{\sinh\left(\frac{\pi d}{\lambda}\right)}.$$

- It should correspond to CS theory with $SL(2, \mathbb{C})$ gauge group

Semi-classical limit

- large spin $j_i \to \infty$ and $\ell_P \to 0$ s.t. $\ell_P^2 j_i \to \ell_i$
- $\log Z \sim a_H/4\ell_P^2$ with $a_H = 8\pi \sum_i \ell_i$
Beyond the leading order term

- The partition function takes the form

\[Z \simeq \frac{2 \sinh^2 \pi}{\lambda} \prod_{i=1}^{N} \left(\sum_{m=0}^{\infty} \exp(-\beta E_{m}^{(j_i)}) \right) \]

- The energy spectrum is the energy of an accelerated observer (same as E. Bianchi)

\[E_{m}^{(j)} = \langle j, m | aK | j, m \rangle = (m - j)a \]

- The temperature in the Unruh temperature \(\beta = \frac{2\pi}{a} \) of the observer

Locally at the vicinity of the quantum Black Hole

- Thermalized states at \(\beta \): probably gravitational dof

- The vacuum has a negative energy and responsible for the huge entropy
Conclusion and references

LQG in a nut shell
- Kinematic States are labelled by topological graphs
- Geometrical operators have discrete spectra
- The quantum dynamics is still under construction

What do Quantum Black Holes teach us?
- The Barbero-Immirzi parameter should return to $\gamma = i$
- The LQG dof contain the gravitons (at least close to a BH horizon)

Effective description of a Quantum Black Hole
- Thermalized graviton at Unruh temperature
- The vacuum has a negative energy
- The energy of the vacuum is responsible for the entropy

Our recent references