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Introduction: Part I

The subject of Quantum Vacuum Energy (the

Casimir effect) dates from the same year as

the discovery of renormalized quantum electro-

dynamics, 1948. It puts the lie to the naive pre-

sumption that zero-point energy is not observ-

able. On the other hand, because of the severe

divergence structure of the theory, controversy

has surrounded it from the beginning. Here we

will deal with divergences carefully!
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Meaninglessness of Self-energies?

Sharp boundaries, and even soft ones, give rise
to divergences in the local energy density near
the surface, which may make it impossible to
extract meaningful self-energies of single
objects, such as the perfectly conducting sphere
considered by Boyer. [Graham, Jaffe, et al. (21st
century), Deutsch and Candelas (1979)].

In fact, it now appears that these surface diver-

gences can be dealt with successfully in a pro-

cess of renormalization. See for example, PRD

88, 025039, 045030 (2013).
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Coupling to gravity

Gravity couples to the local energy-momentum
tensor, and such surface divergences promise
serious difficulties.

How does the completely finite Casimir
interaction energy of a pair of parallel
conducting plates, as well as the divergent
self-energies of non-ideal plates, couple to
gravity?

For a beginning of the renormalization of
Einstein’s equations resulting from singular
Casimir surface energy densities see Estrada
et al., J. Phys. A 41, 164055 (2008).
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Casimir Stress Tensor for ‖ Plates

Brown and Maclay a showed that, for parallel
perfectly conducting plates separated by a
distance a in the z-direction, the electromagnetic
stress tensor acquires the vacuum expectation
value between the plates

〈T µν〉 =
Ec

a
diag(1,−1,−1, 3), Ec = − π2

720a3
~c.

Outside the plates the value of 〈T µν〉 = 0.
aL. S. Brown and G. J. Maclay, Phys. Rev. 184, 1272 (1969)
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Variational principle

Now we turn to the question of the gravitational
interaction of this Casimir apparatus. It seems
this question can be most simply addressed
through use of the gravitational definition of the
energy-momentum tensor,

δWm ≡ −1

2

∫

(dx)
√−g δgµνTµν =

1

2

∫

(dx)
√−g δgµνT

µν.

For a weak field,

gµν = ηµν + 2hµν

(Schwinger’s definition of hµν). QVG, Toulouse, 5/11/13 – p.6/44



Gravitational energy

So if we think of turning on the gravitational field
as the perturbation, we can ignore

√−g. The
gravitational energy, for a static situation, is
therefore given by (δW = −

∫
dt δE)

Eg = −
∫

(dx)hµνT
µν.

The Fermi metric describes an inertial coordinate
system:

h00 = −gz, h0i = hij = 0.
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Cartesian coordinate systems

The Cartesian coordinate system attached to the
earth is (x, y, z), where z is the direction of −g.
The Cartesian coordinates associated with the
Casimir apparatus (plate separation a, length L)
are (ζ, η, χ), where ζ is normal to the plates, and
η and χ are parallel to the plates.

y

zζ η

α
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Gravitational energy of apparatus

Now we calculate the gravitational energy

Eg =

∫

(dx)gzT 00 = gEcL
2ζ0 cos α + K,

where K is a constant, independent of the
center of the apparatus ζ0, z0 = ζ0 cos α. Thus,
the gravitational force per area A = L2 on the
apparatus is independent of orientation

F

A
= − ∂Eg

A∂z0
= −gEc,

a small upward push.
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Rindler Coordinates

Relativistically, uniform acceleration is described
by hyperbolic motion

t = ξ sinh τ, z = ξ cosh τ,

which corresponds to the metric

dt2 − dz2 = ξ2dτ 2 − dξ2.

d’Alembertian operator has cylindrical form

−
(

∂

∂t

)2

+

(
∂

∂z

)2

= − 1

ξ2

(
∂

∂τ

)2

+
1

ξ

∂

∂ξ

(

ξ
∂

∂ξ

)

.
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Single Accelerated δ-Plate

For a single semitransparent plate at ξ1, the
Green’s function can be written as

G(x, x′) =

∫
dω

2π

d2k

(2π)2
e−iω(τ−τ ′)eik·(r−r

′)⊥g(ξ, ξ′),

where the reduced Green’s function satisfies
[

−ω2

ξ2
− 1

ξ

∂

∂ξ

(

ξ
∂

∂ξ

)

+ k2 + λδ(ξ − ξ1)

]

g =
1

ξ
δ(ξ−ξ′),

which we recognize as just the semitransparent

cylinder problem with m → ζ = −iω and κ → k.
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Energy-Momentum Tensor

The canonical energy-momentum for a scalar
field is given by Tµν = ∂µφ∂νφ + gµν

1√−g
L, where

the Lagrange density includes the δ-function
potential. Using the equations of motion:

T00 =
1

2

(
∂φ

∂τ

)2

− 1

2
φ

∂2

∂τ 2
φ +

ξ

2

∂

∂ξ

(

φξ
∂

∂ξ
φ

)

+
ξ2

2
∇⊥ · (φ∇⊥φ).

〈Tµν〉 follows from 〈φ(x)φ(y)〉 = 1
iG(x, y).
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Force Density

The force density is given by

fλ = − 1√−g
∂ν(

√−gT ν
λ) +

1

2
T µν∂λgµν,

so the gravitational force on the system is

F =

∫

dξξfξ = −
∫

dξ

ξ2
T00

=

∫

dξξ

∫
dζ̂ d2k

(2π)3
ζ̂2g(ξ, ξ) (ζ = ζ̂ξ);

g is given in terms of modified Bessel functions.
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Flat-space Limit for 2 ‖ Plates

In the weak acceleration limit, the Green’s
function reduces to exactly the expected result,
for ξ1 < ξ, ξ′ < ξ2 (a = ξ2 − ξ1)

ξ0g(ξ, ξ′) → 1

2κ
e−κ|ξ−ξ′| +

1

2κ∆̃

[
λ1λ2

4κ2
2 cosh κ(ξ − ξ′)

− λ1

2κ

(

1 +
λ2

2κ

)

e−κ(ξ+ξ′−2ξ2) − λ2

2κ

(

1 +
λ1

2κ

)

eκ(ξ+ξ′−2ξ1)

∆̃ =

(

1 +
λ1

2κ

)(

1 +
λ2

2κ

)

e2κa − λ1λ2

4κ2
,

The flat space limit also holds outside the plates.
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Explicit Force on 2-plate Apparatus

F =
1

96π2a3

∫ ∞

0

dy y3
1 + 1

y+λ1a
+ 1

y+λ2a
(

y
λ1a

+ 1
) (

y
λ2a

+ 1
)

ey − 1

− 1

96π2a3

∫ ∞

0

dy y2

[

1
y

λ1a
+ 1

+
1

y
λ2a

+ 1

]

= −(Ec + Ed1 + Ed2),

which is just the negative of the Casimir energy

of the two semitransparent plates, including diver-

gent parts associated with each plate.
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Mass Renormalization

The divergent term simply renormalizes the
mass of each plate:

Etotal = m1 + m2 + Ed1 + Ed2 + Ec

= M1 + M2 + Ec,

and thus the gravitational force on the entire
apparatus obeys the equivalence principle

gF = −g(M1 + M2 + Ec).
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Centripetal Acceleration

Casimir apparatus undergoing centripetal
acceleration (ωr ≪ 1)

F = −ω2

∫

d3x r t00(r)

= −ω2rCM(m1 + m2 + Ed1 + Ed2 + Ec)

ȳ

z̄

a

ωt

r0

ȳ

z̄

a

α

ωt

r0
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Part II. Divergences

The above analysis may be rightly criticized for
not dealing with divergences properly, and
performing manipulations with divergent
integrals. In the rest of this talk, I will remedy this
situation. We will consider two semi-transparent
plates, interacting with a massless scalar field,
with the potential

V = −λ1

2
δ(z)φ2 − λ2

2
δ(z − a)φ2.
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Green’s function, 0 < z, z′ < a

The Green’s function

G(r, r′; ω) =

∫
(dk⊥)

(2π)2
eik⊥·(r−r

′)⊥g(z, z′),

g =
1

2κ
e−κ|z−z′| +

1

2κ∆

[
λ1λ2

(2κ)2
2 cosh κ(z − z′)

−λ1

2κ

(

1 +
λ2

2κ

)

eκ(2a−z−z′) − λ2

2κ

(

1 +
λ1

2κ

)

eκ(z+z′)

]

,

,
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Denominator

where

∆ =

(

1 +
λ1

2κ

)(

1 +
λ2

2κ

)

e2κa − λ1λ2

(2κ)2
,

with

κ =
√

k2
⊥ + ζ2, ω → iζ.
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Point-split regularization

To define the integrals, we adopt point splitting in
the time and the transverse directions (but not
the z direction:

τ = tE − t′E → 0, R⊥ = (r − r′)⊥ → 0.

The energy is given by the general formula
(more about this later)

E = −
∫

dζ

2π

∫

(dr)ζ2eiζτG(r, r′)
∣
∣
r′→r

.
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Formula for energy

Here the energy/area is readily seen to be given
by

E = −
∫

dζ(dk⊥)

(2π)3
ζ2eiζτeik⊥·R⊥

{
Lz

2κ

+
1

4κ2∆

[

4(κa + 1)
λ1λ2

(2κ)2

−2e2κa

(
λ1 + λ2

2κ
+ 2

λ1λ2

(2κ)2

) ]}

.
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Regulator function

If we adopt polar coordinates in κ = (ζ,k⊥)
space, and similarly let ∆ = (τ,R⊥), we
encounter (α and β are the spherical angles for
κ.)

f(γ) =

∫ 1

−1

d cos α

∫ 2π

0

dβ cos2 α eiκ·∆ → 4π

3
,

where γ is the angle between ∆ and the time
axis. Thus, γ = 0 corresponds to time-splitting
regularization, γ = π/2 to tranverse
space-splitting. The limit is as |∆| = δ → 0.
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Splitting in neutral direction

It is easy to see that

f(0) =
d

dδ
[δf(π/2)] ,

so in the following we will only consider δ = π/2,
space-splitting (neutral direction). Explicitly then,

f(π/2) = 4π

(

−cos κδ

(κδ)2
+

sin κδ

(κδ)3

)

.
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Bulk divergence

First we look at the Weyl, or bulk term, that would
be present with no boundaries,

EW (γ = π/2) = − V

8π2

∫

dκ2 κ2f(π/2)
1

2
κ = − V

2πδ4
,

just as expected. Then

EW (γ = 0) =
3

2π2

V

δ4
,

as is familiar.
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Self and interaction energy

It is then straightforward to calculate the balance
of the energy/area (y = 2κa):

E − EW =
1

128π3a3

∫ ∞

0

dy y2f(γ)

(

1
y

λ1a
+ 1

+
1

y
λ2a

+ 1

)

− 1

96π3a3

∫ ∞

0

dy y3
1 + 1

y+λ1a
+ 1

y+λ2a
(

y
λ1a

+ 1
) (

y
λ2a

+ 1
)

ey − 1
.

We have set the cutoff to zero in the second, finite

term. That term is the same a given previously.
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Divergent terms

The divergent term is the sum of contributions
from each plate separately,

ES =
λ

16π2

(
1

δ2
− λ

8

π

δ
− λ2

12
ln δ

)

,

for γ = π/2. This is for finite λ. In the Dirichlet
limit, λ → ∞, the self-energy is more divergent:

ES =
1

8π

1

δ3
.

E = EW + ES1 + ES2 + Eint.
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Local energy density

To answer the question of how Casimir energy
interacts with gravity, we have to look at local
quantities. The stress tensor, including the
conformal term, is

T µν = ∂µφ∂νφ − 1

2
gµν∂λφ∂λφ − ξ(∂µ∂ν − gµν∂2)φ2.

Then, the Fourier-transformed expectation value
of the stress tensor,

〈T µν〉 =

∫
dζ

2π

(dk⊥)

(2π)2
eiζτeik⊥·Rtµ,ν(z, z′)

∣
∣
∣
∣
z′→z

,
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Quantum mechanical replacement

with the quantum-mechanical replacement

〈φ(r)φ(r′)〉 =
1

i
G(r, r′).
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Energy density z < 0

u(z) = t00(z, z) =
1

2
(−ζ2 + k2

⊥ + ∂z∂z′)g(z, z′)

∣
∣
∣
∣
z′→z

− ξ∂2
zg(z, z).

For z < 0 (g(π/2) = 4π sin κδ/κδ):

u(z < 0) = − 1

16π3

∫ ∞

0

dκ κ3

→−16π(ξ−1/6)
︷ ︸︸ ︷

[(1 − 4ξ)g(γ) − f(γ)]

× e2κz

1 + λ1

2κ

[
λ1

2κ
+

1

∆

λ2

2κ

]

.
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Energy density inside

Similarly, for 0 < z < a, if we are not too close to
the plates, we can drop the cutoff:

u =
1

4π2

∫ ∞

0

dκ
κ3

∆

{

− 2

3

λ1λ2

(2κ)2

+ 4

(

ξ − 1

6

) [
λ1

2κ

(

1 +
λ2

2κ

)

e2κ(a−z)

+
λ2

2κ

(

1 +
λ1

2κ

)

e2κz

]}

.
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Energy density for z > a

Again, not too close to the boundary,

u =
ξ − 1/6

π2

∫ ∞

0

dκ κ3

1 + λ2/2κ

(
λ2

2κ
+

λ1

2κ

1

∆

)

e2κ(a−z).
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Dirichlet boundaries: λ → ∞

u(z < 0) =
3

8π2

ξ − 1/6

z4
,

u(0 < z < a) = − π2

1440a4
+

3

8π2a4
(ξ − 1/6)

×[ζ(4, z/a) + ζ(4, 1 − z/a)],

u(z > a) =
3

8π2

ξ − 1/6

(a − z)4
,

exhibiting the familiar quartic divergences in the

energy density as the boundary is approached.
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Divergences telescope away

It may be useful to see how the usual argument
works for getting rid of the divergent terms
(which are zero for the conformal case, ξ = 1/6):

∫ ∞

−∞
dz

[

u − EC

a
θ(z)θ(a − z)

]

=
3

8π2
(ξ − 1/6)

{∫ a

−∞

dz

z4
+

∫ ∞

0

dz

(a − z)4

+

∫ a

0

dz

a4
[ζ(4, 1 + z/a) + ζ(4, 2 − z/a)]

}

.
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Hurwitz zeta function

From the definition of the Hurwitz zeta function,

ζ(s, x) =
∞∑

n=0

1

(n + x)s
,

It is easy to see the above collapses to

Esurf =
2

8π2
(ξ − 1/6)Iǫ,

where Iǫ =
∫ ǫ

−ǫ dz/z4, while ill-defined, is a con-

stant independent of the plate separation a. The

following will give meaning to this.
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Regulation of surface divergences

Using the regulator, we can tame the surface
divergences. For example, in strong coupling,

u(z < 0) =
3

8π2

(ξ − 1/6)

(z2 + δ2/4)2
+

7

32π2
(1−4ξ)

δ2

(z2 + δ2/4)3
,

which reduces to the previous result if |z| ≫ δ,

and is finite at z = 0.
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Surface terms

Except in the Dirichlet limit, one must include a
term that resides exactly on the boundary.

T 00 =
1

2
∂0φ∂0φ +

1

2
∇φ · ∇φ +

1

2
V φ2 − ξ∇2φ2.

EOM gives an additional surface term:
∫

V

(dr)〈T 00〉 =

∫

V

(dr)
2ω2

2i
G(r, r)

+
1 − 4ξ

2i

∫

∂V

dS · ∇G(r, r′)

∣
∣
∣
∣
r′→r

.
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Effect of surface terms

Including the contribution from the bulk term, we
get here an additional contribution to the energy
that resides exactly on the surface:

∆E = −1 − 4ξ

2

∫ ∞

−∞

dζ

2π

∑ ∂

∂z
g(z, z′)

∣
∣
∣
∣
z′→z

= −1 − 4ξ

32π3

∫ ∞

0

dκκg(γ)

[

− λ1

1 + λ1/2κ
− λ2

1 + λ2/2κ

+
1

∆

λ1λ2

2κ

(
1

1 + λ1/2κ
+

1

1 + λ2/2κ

) ]

.
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Total energy recovered

Combining these contributions is straightforward:

∫ ∞

−∞
dz u(z) + ∆E = E − EW

=
1

128π3a3

∫ ∞

0

dy y2f(γ)

{
1

1 + y/λ1a
+

1

1 + y/λ2a

− y
1 + 1

y+λ1a
+ 1

y+λ2a

(1 + y/λ1a)(1 + y/λ2a)ey − 1

}

.

This is exactly the result obtained directly. For

second term, f(γ) → 4π/3.
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Surface term nontrivial

It is important to recognize that the surface term
does not only contribute to the “divergent” self
energies, but to the finite interaction energy as
well. If we naively only included the integrated
local energy density and just dropped the
divergent terms, we would get

∫ ∞

−∞
dz u correct for ξ = 1/4, where ST = 0

= − 1

96π3a3

∫ ∞

0

dy y3
1 + 12(ξ−1/6)

y+λ1a
+ 12(1−1/6)

y+λ2a
(

y
λ1a

+ 1
) (

y
λ2a

+ 1
)

ey − 1
.
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How does surface energy fall?

For ξ = 1/4 there is no surface term.

For ξ = 0 surface term is included in potential
contribution to stress tensor.

For λ → ∞ surface term vanishes.

It is not yet clear what happens in general.
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Conclusions

We have found an extremely simple answer to
how Casimir energy gravitates: just like any
other form of energy,

F

A
= −gEc.

This result is independent of the orientation
of the Casimir apparatus relative to the
gravitational field. This refutes the claim
sometimes attributed to Feynman that virtual
photons do not gravitate.
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Previous arguments were formal, in that
divergent self energies were not properly
defined. We have now regulated everything
consistently, for both the global and local
description.

Although gravitational energies have a certain
ill-defined character, being gauge- or
coordinate-variant, this result is obtained for a
Fermi observer, the relativistic generalization
of an inertial observer.
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This conclusion is supported by an explicit
calculation in Rindler coordinates, describing
a uniformly accelerated observer. This
demonstrates, quite generally, that the total
Casimir energy, including the divergent parts,
which renormalize the masses of the plates,
possesses the gravitational mass demanded
by the equivalence principle. The gravitational
effects of the surface and cutoff-dependent
terms still require investigation.

The inertial properties of Casimir energies
further are confirmed by considering
centripetal acceleration. QVG, Toulouse, 5/11/13 – p.44/44
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