

Results and prospects on LIV and QG gravity limits with photons from astrophysical sources

Agnieszka Jacholkowska QVG2013, Toulouse

OUTLINE

- LIV in Fundamental Theories
- LIV tests with AGNs & GRBs
- Present outreach
- Future prospects
- Summary & Discussion

LIV in Fundamental Theories

- Lorentz Invariance/Symmetry: Einstein's/Special Relativity & Quantum Mechanics/Standard Model – overall Theoretical Physics
- At scale ~10⁻³⁵ m (10¹⁹ GeV) nature of space needs to account for microscopic effects

 → Unified Theory: Quantum Gravity (QG)
- Some models of QG lead to Lorentz Symmetry Violation (LIV)
 - D-brane String models with foamy structure of space-time
 - Non-commutative geometry
 - Spontaneous symmetry breaking
 - some LQG
- Lorentz Symmetry is exact in Particle Physics here tests at high energies

LIV in Fundamental Theories

- LIV can be tested in different ways:
 - Photon decay, Vacuum Cherenkov Radiation
 - Modified GZK cutoff with UHERCs
 - TeV y-ray spectra of extragalactic sources
 - Vacuum birefringence ...
- Dispersion of light in vacuum:

 \rightarrow modification of velocity of light with photon energy

Tests with un-polarized photons from variable, distant and energetic sources: AGNs, GRBs and (Pulsars) (e.g. J. Ellis, N. E. Mavromatos, D.V.Nanopoulos 1999, L.J. Garay 1998, G. Amelino-Camelia et al., 2001)

Modifications of the Dispersion Relations

• LIV modifies dispersion relations for photons

$$c^{2}p^{2} = E^{2}(1 + \xi(E/E_{planck}) + \zeta(E/E_{planck})^{2} + ...)$$

• Leading corrections to the speed of light (c) in vacuum

$$v = \delta E / \delta p = c (1 - \xi (E / E_{planck}) - \zeta (E / E_{planck})^2)$$

inear term:
$$\xi = \frac{E_{planck}}{E_{QG}}$$
 and $\zeta = \left(\frac{E_{planck}}{E_{QG}}\right)^2$

• Figure of Merit for LIV studies with astrophysical sources:

$$\xi \approx \frac{c E_p}{d} \frac{\Delta t}{\Delta E}$$

Energy dependent Time-Lags

- What do we measure : time-lags as a function of energy and not E_{QG}
- The time-lags can also appear in the emission processes at the source

J. Bolmont

Astrophysical probes of LIV

		+ redshift		
	Pulsar	Active Galactic Nuclei	Gamma Ray Burst	
	 Permanent pulsations 	•Extragalactic	Extragalactic	
Ad.	•Distinguish between LIV/source effects	• Up to TeV	•Up to TeV ?	
	• Galactic	Source effects	Source effects	
Disad.	• Up to 400 GeV(Crab) to be confirmed with H.E.S.S.2	• Random transient evts	• Obs. based on luck	

Time-lags: methods for deriving E_{QG}

Cross Correlation Function (MCCF)	H.E.S.S. (AGN) BATSE (GRB)	low systematic effects
Energy Cost Function (ECF)	MAGIC (AGN)	
Wavelet Transforms (CWT)	H.E.S.S., (AGN) BATSE, HETE2, SWIFT (GRB)	driven by LC binning
Likelihood fit	MAGIC, H.E.S.S. (AGN) INTEGRAL (GRB), Fermi (GRB)	best statistical precision
Cost Function/Shannon Pair-View (new)	Fermi (GRB)	

→ Precision studies require: evaluation of systematic effects and error calibrations

Time-lag measurement - likelihood

Strategy adapted from Martinez & Errando (Astropart. Phys. 31 (2009) 226)

$$P(E,t) = N \int_0^\infty A(E_s) \Gamma(E_s) G(E - E_s, \sigma(E_s)) F_s(t_s - \tau_n E_s^n) dE_s$$

A(E_s): Acceptance of telescope G(E-E_s): Energy smearing functon $\Gamma(E_s)$: Spectrum at source $F_s(t_s)$: Light curve at source

• The time-lag parameter :
$$\tau_n = \frac{t_2 - t_1}{E_2^n - E_1^n} \simeq s_{\pm} \frac{(1+n)}{E_{QG}^n H_0} k_n$$
 with $k_n = \int_0^z \frac{(1+z')^n dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$
(s/TeV for n=2)

Parametrize Template Light curve F_s(t_s) at low energy and spectrum A(E_s)
 Use Maximum Likelihood at high energy to estimate the time lag parameter.

•The likelihood is the product of the p.d.f's over all the photons in the fit:

$L = \prod_{i} P(E,t)$

MAGIC: Mrk501 flare – a minute lag ?

 \rightarrow Finally: observed lag attributed to the "source" emission

MAGIC: Mrk 501 2005 flare

→ E_{QG} > 0.3 10¹⁸ GeV @ 95% CL

Idea:

- apparent duration of the pulse is increased by the dispersion
- the energy/unit t decreases with distance from the source
- so dispersion can be extracted by maximizing the energy emitted by the source

 $ECF_{L} = \sum_{T_{1} < t < \tau_{2}} E(i)$ the transformation is repeated for many values of τ

vacuum refractive index linear in energy

Position of ECF maximum: value of τ which recovers the signal in the sense of maximizing power

MAGIC + J. Ellis et al., Phys.Lett.B, 2009

H.E.S.S. - PKS 2155-304 flare

 \rightarrow Find a time-lag with Light Curves in 2 different energy ranges

PKS 2155-304 – constraints with likelihood

Published in Astrop. Phys.

Limits on E_{QG} (linear term) in 2012

→ Best limit with GRB 090510 at E_P disfavors some models with linear dependence of c on energy – QG foam, diffractive index, …

Limits on E_{QG} (linear term) in 2012

- Lot of discussions about the limit with GRB 090510 strongly dependent on highest energy photon of 30 GeV
- Unique result with 1 GRB: use similar methods, no study of systematic effects
 source induced effects ?
 redshift dependence?
- To study Fundamental properties of the Space-Time we need extraordinary efforts as *"Extraordinary claims require extraordinary evidence"* (J. Ellis et al., 2009)

 \rightarrow re-analysis of the 4 "golden GRBs" of Fermi

Data of 4 GRBs seen by Fermi-LAT

GRB	Redshift	κ_1	κ_2
080916C	4.35 ± 0.15	4.44	13.50
090510	0.903 ± 0.003	1.03	1.50
090902B	1.822 ± 0.001	2.07	3.96
090926A	2.1071 ± 0.0001	2.37	4.85

Times t_i and energies E_i of photons from 4 Gamma-Ray Bursts observed by *Fermi-LAT*

Notes:

- various redshift z
- energies from 20 MeV to 30 GeV
- timescale from 3s (090510) to 25s

Importance of selected time window - migrations at 0.5 MP scale

Three methods to look for dispersion

PairView (PV)

 $L_{i,j} = \frac{t_i - t_j}{E_i^n - E_j^n}$

Sharpness Maximization (SMM) Maximum likelihood (ML)

1 calculation of

1 For a given τ_n :

$$S(\tau_n) = \sum_{i=1}^{N-\rho} \log\left(\frac{\rho}{t'_{i+\rho}}\right)$$

1 Build a model

 $\frac{\rho}{\rho - t'_i} \right) \qquad \frac{P(t, E|\tau_n) =}{\frac{1}{N_{pred}} \Lambda(E) f(t - \tau_n E^n)}$

2 distribution of $L_{i,j}$

2 calculation for several τ_n

2 test it for different τ_n

Constraints on the time-lag parameter τ_n

Linear case (n = 1)

$$k_1 = \int_0^z \frac{(1+z')\,dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$

 \rightarrow No significant "linear" time-lag measured with 4 GRBs

Constraints on the time-lag parameter τ_n

Quadratic case (n = 2)

$$k_2 = \int_0^z \frac{(1+z')^2 \, dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$

 \rightarrow No significant "quadratic" time-lag measured with 4 GRBs

Accounting for GRB intrinsic dispersions

 $\tau_n = \tau_{\rm LIV} + \tau_{\rm intrinsic}$

(data) (LIV effect) (source)

Modelization of $\tau_{\rm int}$, assuming observations are dominated by source effects:

- width (τ_{int}) = width (τ_n) and $\langle \tau_{int} \rangle = \langle \tau_n \rangle = 0$
- PDF of τ_{int} set to match distribution of possibilities for τ_n \rightarrow symmetric confidence intervals on τ_{LIV}
- worst case scenario
 - \rightarrow most conservative limits

the Systematic error were set to be ~ Statistical error

95% CL lower limits on E_{QG}

95% CL lower limits on E_{QG}

Quadratic case (n = 2) $\tau_2 = \frac{\Delta t}{\Delta E^2} \simeq \frac{3}{\mathbf{E}_{\mathrm{OG}}^2 \mathbf{H}_0} k_2(z)$ PV Lower Limit on E_{aa} (10⁶ GeV) (n=2, s =+1) SMM ¢ΜL 10 95% PKS2155-304 High conf dence GRB090510 **Sub-luminal limits** with systematics (source effects) 80005A 000,00C 200000 ¹⁹0570 10-1 1.5 2.5 3.5 0.5 2 3 4.5 4 Redshift

Conclusions : latest Fermi results

- Paper published: Phys. Rev. D 87, 122001 (2013) [arXiv:1305.3463] Detailed description of methods and procedures (30 pages)
- 4 bright GRBs with measured redshift analyzed with 3 different methods :

E_{QG}¹ > 7.6 E_P E_{QG}² > 1.3 10¹¹ GeV

- \rightarrow the most stringent, complete and robust results on linear and quadratic term
- → Linear LIV constraint has reached the Planck scale boundary even taking account intrinsic potential time-lags disfavors some classes of QG models but still with only <u>one measurement</u>
- \rightarrow Quadratic LIV needs to be improved

Next studies: GRB130427A

Amelino-Camelia, et al. (arXiv: 1305.2626) :

Study of correlations time-energy-redshift, minibursts \rightarrow unusual results at a given scale and redshift $E_{QG} \sim M_P/25$?

 \rightarrow importance of continuity in probing all z ranges

Synergy between GRBs & AGNs

- Measured time-lags as a function of energy :
 - → no significant deviation from zero value
- Large errors from GRBs at high z : low stats and long GRBs

E_{QG} with GRBs & AGNs

VERITAS: CRAB pulsar

E_{QG},₁ > 1.9 10¹⁷ GeV DisCan method - arXiv:1337.8382

Pulsars: phase-lag parameter

• Time delay due to LIV: \rightarrow phase delay between photons of \neq energies in the reconstructed phasogram. Define a phase-lag parameter : $(\text{TeV}^{-1} \text{ for } n=1)$ (ve) /61 10 $(TeV^{-2} \text{ for } n=2)$ $P(t) \approx P + \dot{P}t$ For short time scale: $P(t) \approx P$ 10-2 10 0.5 Parametrize Template Phasogram F at low energy and spectrum A(E) $F_{s}(t_{s}-\tau_{n}E_{s}^{n}) \rightarrow F_{s}(\Phi_{s}-\varphi_{n}E_{s}^{n})$ $P(E,t) \rightarrow P(E,\Phi)$ Maximum Likelihood at high energy gives estimate on the phase-lag parameter. $L = P(E, \Phi)$

Simulations for H.E.S.S. II

Sensitivity to linear term: 2 background models

M.Chrétien, 2nd DIAS workshop

Simulations for H.E.S.S. II

Simulations for H.E.S.S. II

E _{QG} ^{95% LL} (GeV) for H E S S 2	Linear		Quadratic	
pulsar candidates	S/B=∞	S/B=1	S/B=∞	S/B=1
Crab	1.04x10 ¹⁸	5.47x10 ¹⁷	1.74x10 ¹⁰	1.48x10 ¹⁰
PSR J1826-1256*	< 3.18x10 ¹⁸	< 1.83x10 ¹⁸	< 3.19x10 ¹⁰	< 2.72x10 ¹⁰
PSR J1709-4429	3.19x10 ¹⁷	1.84x10 ¹⁷	1.01x10 ¹⁰	8.63x10 ⁹
PSR J1809-2332	1.64x10 ¹⁷	9.5x10 ¹⁶	7.25x10 ⁹	6.20x10 ⁹
Vela	4.69x10 ¹⁶	2.71x10 ¹⁶	3.87x10 ⁹	3.31x10 ⁹
Vela	4.69x10 ¹⁶	2.71x10 ¹⁶	3.87x10 ⁹	3.31x10 ⁹

* from published upper limit on distance (Fermi 2nd year catalog)

M.Chrétien, 2nd DIAS workshop

Discussion & OUTLOOK

- LIV is <u>not a necessary</u> feature in Quantum Gravity Theory however LIV at Planck scale provides observational window of QG effects
 → study of LIV at ~ E_P energy <u>may provide</u> a signature of QG phenomena
- Present data : Pulsars, AGNs and GRBs allow to approach E_P as a QG scale and even exceed E_P for at least 1 case
 → disfavor models with E_{QG} < E_P
- Studies with 3 types of sources are mandatory coherence of results?
- Measurements with redshift important for Physics and Systematic source effects Theory does not exclude different effects at different redshifts and energy ranges
- New results are expected with H.E.S.S. II: Pulsars, AGNs at higher z other short GRBs in Fermi-LAT Real Progress : Population studies in future CTA observatory