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Neutron Stars

Stars

Stars are excellent, free
laboratories.

» Blue stars on the left and
red on the right.

The Sun consumes hydrogen
in its core — main sequence.

Supergiants consume
hydrogen in a shell, helium
and successive elements in
the core,

Supergiants explode and
become neutron stars.
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Neutron Stars

How big are neutron stars?

GM?
R4

Gravity yields: Py ~
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Gravity yields: Py ~ G,Qf

Relativistic degenerate neutrons
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How big are neutron stars?

Gravity yields: Py ~ G,Qf

Relativistic degenerate neutrons
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Neutron Stars

How big are neutron stars?

Gravity yields: Py ~ G,Qf

Relativistic degenerate neutrons

2

mpcC Mn 3
Py~ —2 M= _1R
0T TN A3
Solving yields
3
R=Af m="¢
mp ms

R ~ 17km, M ~ 1.4M,
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Neutron Stars

What is a neutron star?
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Neutron Stars

What is a neutron star?

» The remnant of the
explosion of massive star.

» A giant atomic nucleus.
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Neutron Stars

What is a neutron star?

» The remnant of the
explosion of massive star.

» A giant atomic nucleus.

» An accurate clock (us)
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Neutron Stars
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Neutron Stars

How strong can their fields be?

Let's calculate the expected magnetic field of a neutron star.
*

> Let's assume that the core
of the star has a magnetic
field and mass similar to the
Sun’s.
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Neutron Stars

How strong can their fields be?

Let's calculate the expected magnetic field of a neutron star.
*

> Let's assume that the core
of the star has a magnetic
field and mass similar to the
Sun’s.

» A neutron star has a radius
of 10 km.

» Flux freezing: ® o BR?.

» B ~ 50G (70000)% ~
1011-12@3,
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Neutron Stars

» The first neutron stars to
be identified were radio
pulsars.
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» The first neutron stars to
be identified were radio
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» Over 2,000 are now =
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Neutron Stars

Neutron Stars

10710

» The first neutron stars to
be identified were radio
pulsars.

10718 10712 1071

10

107

» Over 2,000 are now
known.

10716

10717

» Lots of flavours — not
even including the
accretors.
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Superconductivity Cylindrical Geometry

Superconductivity in Neutron Stars

» Nucleons appear to be paired in large nuclei (like a neutron
star). Even small nuclei exhibit pairing, e.g. the Borromean
nuclei Helium-6, Helium-8 and Lithium-11.
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Superconductivity Cylindrical Geometry

Superconductivity in Neutron Stars

» Nucleons appear to be paired in large nuclei (like a neutron
star). Even small nuclei exhibit pairing, e.g. the Borromean
nuclei Helium-6, Helium-8 and Lithium-11.

» The pairing gap yields a transition temperature greater than
5 x 10° K.

» Middal (1959) first pointed that neutron-star interiors should
be superfluid.

» Pulsar glitches are well explained by superfluid vortex
unpinning in the inner crust of neutron stars (Anderson & Itoh
1975).

» The accelerated cooling of the Cas-A neutron star may

indicate a superfluid transition is underway (Elshamouty et al.
2013).
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Superconductivity

Cylindrical Geometry

Superconductivity

In a lab superconductor the
distance between vortices is
~ 1pm, and their size is

~ 100nm.

Essmann & Trauble 1967
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Superconductivity

Superconductivity

Cylindrical Geometry
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In a lab superconductor the
distance between vortices is
~ 1pm, and their size is

~ 100nm.

In a neutron star we have

4h
~ = 7B1opm = 19X,
meB
and
2
mc
A —— = 7p1sf
L 87Tq2n0 P151m
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Superconductivity Cylindrical Geometry

Cylindrical Geometry
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Effective Action

Worldline Numerics
Strong-Field QED Our Developments

Casimir Force

Effective Action

For a magnetic field the effective
action is the free energy of the
system (actually minus the free

energy).

1
MAY] = / dx* (—4F3VF°W>

- intein | E=]

Jeremy S. Heyl Dan Mazur (1209.4409) The Structure of Neutron-Star Magnetic Fields



Effective Action
Worldline Numerics

Strong-Field QED Our Developments
Casi

r Force

Worldline Numerics — What?

N =16
\
/
Gies, Roessler,
Klingmuller
N, =2048 N, =16384 hep-th/ 0511092
1107.0286
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Effective Action

Worldline Numerics
Strong-Field QED Our Developments

Casimir Force

Worldline Numerics — How?

Express the propagator in the proper-time formalism.

2 [®dT
O = o ) e [ e

el Jo dTAL(xon+x(T))5(7)

X
%m«e% I o Fr onx(m) | q
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Effective Action
Worldline Numerics

Strong-Field QED Our Developments
Casi

r Force

Worldline Numerics — How?

1. Average the operator O over an ensemble of closed particle
loops with a Gaussian velocity distribution.
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r Force

Worldline Numerics — How?

1. Average the operator O over an ensemble of closed particle
loops with a Gaussian velocity distribution.

2. Pick a point.
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Worldline Numerics — How?

1. Average the operator O over an ensemble of closed particle
loops with a Gaussian velocity distribution.
2. Pick a point.

3. Pick a second point a random Gaussian step away with
variance of one half.
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Worldline Numerics — How?

1. Average the operator O over an ensemble of closed particle
loops with a Gaussian velocity distribution.

2. Pick a point.
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variance of one half.
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Jeremy S. Heyl Dan Mazur (1209.4409) The Structure of Neutron-Star Magnetic Fields



Effective Action

Worldline Numerics
Strong-Field QED Our Developments

Casimir Force

Worldline Numerics — How?

1. Average the operator O over an ensemble of closed particle
loops with a Gaussian velocity distribution.

2. Pick a point.

3. Pick a second point a random Gaussian step away with
variance of one half.

4. Reduce the variance by a factor of two and pick a point a
Gaussian step from the midpoints of all of the line segments.

5. Repeat the last step until you have enough points.
6. Shift the center of mass of the points to the origin.
7. Scale the loops for the proper time.

T 1
R(r) = VTy(r/T), /O 4R (r) = /0 dt52(t).
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Our Developments

Implementation of world-line numerics on GPUs

» a factor of 103 speed-up relative to CPUs,
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Casimir Force

Our Developments

Implementation of world-line numerics on GPUs
» a factor of 103 speed-up relative to CPUs,

» new robust estimates of statistical errors,

v

simplify with cylindrical symmetry,

v

used scalars instead of spinors (the spinor result is
qualitatively similar)
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Effective Action

Worldline Numerics
Strong-Field QED Our Developments

Casimir Force

Our Developments

Implementation of world-line numerics on GPUs
» a factor of 103 speed-up relative to CPUs,
» new robust estimates of statistical errors,
» simplify with cylindrical symmetry,
» used scalars instead of spinors (the spinor result is
qualitatively similar)

» vortex line and vortex cylinders,
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Effective Action

Worldline Numerics
Strong-Field QED Our Developments

Casimir Force

Casimir Force
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» For fields less than 102 G the flux tubes will be about
seventeen Compton wavelengths apart with large regions free
of flux tubes.
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Consequences

Consequences

» For fields less than 10'2 G the flux tubes will be about
seventeen Compton wavelengths apart with large regions free
of flux tubes.

» For fields between 1012 G and 2 x 1012 G, the tubes will be
evenly and closely packed (like the conventional model).

» For fields between 2 x 1012 G and 5 x 1012 G the flux tubes
will be either about eight or seventeen Compton wavelengths
apart forming a (probably irregular) lattice filling the entire
region.

» For stronger fields, the tubes will be evenly and closely packed
(like the conventional model).

» These bounds are qualitative as we need to model the
superconductor more accurately.
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Consequences

Do we see different glitching as a function of B-field?

Glitch Rate [yr~']

102 100 104 100

Surface Magnetic Field [Gauss]

Yu et al. 2013
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Consequences

we see different glitching as a function of B-field?
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Consequences

see different glitching as a function of B-field?
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Consequences

we see different glitching as a function of B-field?
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Consequences

Future directions

» Consequences (how do stars glitch as a function of B),
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» Two-vortex calculation,
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Eliminate cylindrical symmetry,
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Two-vortex calculation,

» Fermions in two-vortex configuration,
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