Can quantum vacuum be the origin of present-day cosmic acceleration?

Alain Blanchard

Arnaud Dupays (LCAR), Brahim Lamine (LKB) Toulouse, November 5th, 2013

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

Accelerated expansion

There is no FL model that reproduces the present day observations without acceleration...

Nobel Prize in Physics 2011

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

イロン イロン イヨン イヨン

æ

Nobel Prize in Physics 2011

S.Perlmuter, A.Riess, B.Schmidt

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

・ロト ・日下・ ・日下

• 3 >

What does it mean?

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

What does it mean?

COSMOLOGY MARCHES ON

イロト イヨト イヨト イヨト

æ

What does it mean?

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

What does it mean?

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

Observations need $P \approx -\rho$

What does it mean?

. . .

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

Observations need $P \thickapprox -\rho$ So that the gravity strength is repulsive and proportional to R

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

イロト イヨト イヨト イヨト

æ

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

$$P = -\rho \tag{1}$$

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

$$P = -\rho \tag{1}$$

Is there an experimental difference between Λ and L.I.V.?

(日本) (日本) (日本)

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

$$P = -\rho$$
 (1)

Is there an experimental difference between Λ and L.I.V.?

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe (\rightarrow Kragh arXiv:1111.4623)

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

$$P = -\rho$$
 (1)

Is there an experimental difference between Λ and L.I.V.?

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe (\rightarrow Kragh arXiv:1111.4623)

So is this the origin of the acceleration ?

(1日) (日) (日)

Historical aspects

No!

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

イロト イヨト イヨト イヨト

æ

Historical aspects

No!

The Vacuum catastroph (Weinberg, 1989):

$$\rho_{\mathbf{v}} = \langle \mathbf{0} | \mathcal{T}^{\mathbf{00}} | \mathbf{0} \rangle = \frac{1}{(2\pi)^3} \int_0^{+\infty} \frac{1}{2} \hbar \omega \, \mathrm{d}^3 \mathbf{k}$$

with $\omega^2 = k^2 + m^2$

イロン イヨン イヨン イヨン

Historical aspects

No!

The Vacuum catastroph (Weinberg, 1989):

$$\rho_{\nu} = \langle 0 | T^{00} | 0 \rangle = \frac{1}{(2\pi)^3} \int_0^{k_c} \frac{1}{2} \hbar \omega \, \mathrm{d}^3 \mathbf{k}$$

with $\omega^2 = k^2 + m^2$ highly divergent:

$$ho_{
m v}(k_c) \propto rac{k_c^4}{16\pi^2}$$

(for $k_c \gg m$).

イロト 不得下 イヨト イヨト

Equation of state

The pressure (massless field):

$$egin{aligned} \mathcal{P}_{m{v}} = (\mathbf{1}/\mathbf{3})\sum_i \langle 0|\,\mathcal{T}^{ii}|0
angle = rac{1}{3}rac{1}{2(2\pi)^3}\int_0^{+\infty}k\,\mathrm{d}^3\mathbf{k} \end{aligned}$$

(周) (日) (日)

臣

Equation of state

The pressure (massless field):

$$P_{\mathbf{v}} = (\mathbf{1}/\mathbf{3}) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

Equation of state

The pressure (massless field):

$$P_{\mathbf{v}} = (\mathbf{1}/\mathbf{3}) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

$$P = \frac{1}{3}\rho \tag{2}$$

Quantum Vacuum contribution A new scenario

Equation of state

The pressure (massless field):

$$P_{\mathbf{v}} = (\mathbf{1/3}) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

$$P = \frac{1}{3}\rho \tag{2}$$

i.e. eq. (1) + eq. (2) leads to :

$$P_{v} = \rho_{v} = 0$$

Equation of state

The pressure (massless field):

$$P_{\mathbf{v}} = (\mathbf{1/3}) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

$$P = \frac{1}{3}\rho \tag{2}$$

i.e. eq. (1) + eq. (2) leads to :

$$P_{v} = \rho_{v} = 0$$

 \rightarrow usual conclusion on zero-point energy contribution (for instance by dimensional regularization).

Equation of state

Does not hold for a massive field (Zeldovich 1968, ...):

$P_v = -\rho_v$

イロト イヨト イヨト イヨト

Equation of state

Does not hold for a massive field (Zeldovich 1968, ...):

$$P_{\mathbf{v}} = -\rho_{\mathbf{v}}$$

But

$$\rho_v = m^4(...)$$

イロン イヨン イヨン イヨン

Equation of state

Does not hold for a massive field (Zeldovich 1968, ...):

$$P_v = -\rho_v$$

But

$$\rho_v = m^4(...)$$

cf Review by J.Martin 2012 (astro-ph/1205.3365).

Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask)

Casimir effect

Where is there vacuum contribution in laboratory physics?

イロン イヨン イヨン イヨン

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

イロト イポト イヨト イヨト

臣

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:

$$P_x = 3\rho$$

イロト イポト イヨト イヨト

臣

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:

 $P_x = 3\rho < 0$

イロン イヨン イヨン イヨン

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:

$$P_x = 3\rho < 0$$

and ...

イロト イポト イヨト イヨト

臣

Casimir effect

Where is there vacuum contribution in laboratory physics?

with:

 $P_x = 3\rho < 0$

and ...

$$P_{//} = -\rho$$

Brown & Maclay (1968)

Casimir effect from higher dimension

Assume there is an additional compact dimension.

・吊り ・ヨト ・ヨト

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Standard physics in 3+1 D (brane), gravity in 3+1+1D (Bulk).

A (2) > (2) > (2) >

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Standard physics in 3+1 D (brane), gravity in 3+1+1D (Bulk).

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983).

(1日) (1日) (日)

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Standard physics in 3+1 D (brane), gravity in 3+1+1D (Bulk).

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983).

This result can be established by evaluating zero mode contributions (Rohrlich 1984). Dispersion relation:

$$\omega^2 = k^2 + \frac{n^2}{R^2}$$

(日本) (日本) (日本)

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Standard physics in 3+1 D (brane), gravity in 3+1+1D (Bulk).

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983).

This result can be established by evaluating zero mode contributions (Rohrlich 1984). Dispersion relation:

$$\omega^2 = k^2 + \frac{n^2}{R^2}$$

This (permanent) contribution can be evaluated by mean of dimensional regularization.

Casimir effect: the Hubble radius

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

・ロン ・四 と ・ ヨン ・ ヨン

æ

Casimir effect: the Hubble radius

Assumption 1: At high energy, only modes with λ smaller than *ct* have to be taken into account i.e.:

$$\rho_{\mathbf{v}} = \frac{5\hbar c}{8\pi^3 R} \int_{\omega > \omega_H}^{\infty} k^2 \mathrm{d}k \left[\sum_{n = -\infty}^{\infty} \left(k^2 + \frac{n^2}{R^2} \right)^{1/2} \right]$$

Casimir effect: the Hubble radius

Assumption 1: At high energy, only modes with λ smaller than *ct* have to be taken into account i.e.:

$$\rho_{\mathbf{v}} = \frac{5\hbar c}{8\pi^3 R} \int_{\omega > \omega_H}^{\infty} k^2 \mathrm{d}k \left[\sum_{n = -\infty}^{\infty} \left(k^2 + \frac{n^2}{R^2} \right)^{1/2} \right]$$

Assumption 2: as long as $ct \ll \pi R$ gravitational vacuum should be that of a massless field in a 4+1D space time i.e.:

$$\rho_v = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Space Isotropy ends...

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

・ロン ・回 と ・ ヨン ・ ヨン

æ

Space Isotropy ends...

when $ct \sim \pi R \ \omega_H \sim \frac{1}{R}$, this is the last time at which symetries ensure $\rho_v = 0$. Then

$$\rho_{\rm v} = \frac{5\hbar c}{8\pi^3 R} \int_{1/R}^{\infty} k^2 \mathrm{d}k \, [...] = 0$$

イロト 不得下 イヨト イヨト

Quantum Vacuum contribution A new scenario

Space Isotropy ends...

when $ct \sim \pi R \ \omega_H \sim \frac{1}{R}$, this is the last time at which symetries ensure $\rho_v = 0$. Then

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_{1/R}^{\infty} k^2 \mathrm{d}k \, [\ldots] = 0$$

Later, when $ct \gg \pi R$ i.e. $\omega_H \sim 0$

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [...] = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^2 \mathrm{d}k \, [...]$$

with :

$$[\ldots] = \left[\sum_{n=-\infty}^{\infty} \left(k^2 + \frac{n^2}{R^2}\right)^{1/2}\right]$$

▲祠 ▶ ★ 注 ▶ ★ 注 ▶

Isotropy ends...

The condition :

$$\omega = \sqrt{k^2 + \frac{n^2}{R^2}} < \frac{1}{R}$$

ensured only if n = 0, so:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^3 \mathrm{d}k = \frac{5\hbar c}{32\pi^3 R^5}$$

イロト イヨト イヨト イヨト

臣

Isotropy ends...

The condition :

$$\omega = \sqrt{k^2 + \frac{n^2}{R^2}} < \frac{1}{R}$$

ensured only if n = 0, so:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^3 \mathrm{d}k = \frac{5\hbar c}{32\pi^3 R^5}$$

In the brane:

$$\rho_{\rm v} = \frac{5\hbar c}{16\pi^2 R^4}$$

- 1

イロト イヨト イヨト イヨト

臣

Dark energy emerges...

Pressure:

$$P_{v}^{\perp} = 4
ho_{0} = rac{20\hbar c}{32\pi^{3}R^{5}}$$

Along the brane, using the fact that the $T^{\mu\nu}$ is traceless and integrating along the 4th spatial dimension:

$$P_{\mathbf{v}}^{\parallel} = -\frac{5\hbar c}{16\pi^2 R^4} = -\rho_{\mathbf{v}}$$

Dark energy emerges...

Pressure:

$$P_{v}^{\perp} = 4
ho_{0} = rac{20\hbar c}{32\pi^{3}R^{5}}$$

Along the brane, using the fact that the $T^{\mu\nu}$ is traceless and integrating along the 4th spatial dimension:

$$\mathsf{P}_{\mathsf{v}}^{\parallel} = -\frac{5\hbar c}{16\pi^2 R^4} = -\rho_{\mathsf{v}}$$

so:

$$R = \left(\frac{5\hbar G}{2\pi c\Lambda}\right)^{\frac{1}{4}}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Dark energy emerges...

Pressure:

$$P_{v}^{\perp} = 4
ho_{0} = rac{20\hbar c}{32\pi^{3}R^{5}}$$

Along the brane, using the fact that the $T^{\mu\nu}$ is traceless and integrating along the 4th spatial dimension:

$$\mathsf{P}_{\mathsf{v}}^{\parallel} = -\frac{5\hbar c}{16\pi^2 R^4} = -\rho_{\mathsf{v}}$$

so:

$$R = \left(\frac{5\hbar G}{2\pi c\Lambda}\right)^{\frac{1}{4}}$$

 $\Omega_{
m v}\sim$ 0.7 \Rightarrow $R\sim$ 35 $\mu{
m m}$ fits data. Corresponding to $E\sim$ 1*TeV*

(日) (同) (三) (三) (三)

Acceleration is due to vacuum: GR + w = -1

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

イロン イヨン イヨン イヨン

æ

Consequences

The presence of additional compact "large" dimension ($\sim 35 \mu {\rm m})$ can be tested by experiment on gravitational inverse square law on short scale. Additional term:

Present day limit (Adelberger et al. 2009) :

 $R < 46 \mu m$

A (1) > (1) > (1)

Conclusion

Alain Blanchard Can quantum vacuum be the origin of present-day cosmic ad

Conclusion

Casimir effect from quantized scalar field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant. i.e. "usual" physics for DE.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

- Casimir effect from quantized scalar field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant. i.e. "usual" physics for DE.
- Acceleration could be the direct manifestation of the quantum gravitational vacuum.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusion

- Casimir effect from quantized scalar field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant. i.e. "usual" physics for DE.
- Acceleration could be the direct manifestation of the quantum gravitational vacuum.
- ▶ With $R \sim 35 \mu m$ it produces a cosmological constant as observed.

イロト 不得下 イヨト イヨト

Conclusion

- Casimir effect from quantized scalar field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant. i.e. "usual" physics for DE.
- Acceleration could be the direct manifestation of the quantum gravitational vacuum.
- ▶ With $R \sim 35 \mu m$ it produces a cosmological constant as observed. → gravitation is modified on scales $\leq 45 \mu m$

(日) (同) (三) (三) (三)